1. **SUITE ARITHMÉTIQUE**

Une suite arithmétique\(^{(1)}\) (S.A.) est une suite de nombres réels telle que chaque terme de la suite (à partir du deuxième) est égal au précédent **augmenté** d'un nombre constant **non nul**. Ce nombre s'appelle la **raison** et est noté \(r \).

(1) Au lieu d'utiliser l'expression **suite arithmétique**, tu rencontreras parfois l'expression **progression arithmétique** ce qui signifie exactement la même chose.

<table>
<thead>
<tr>
<th>Exemples</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>13</th>
<th>17</th>
<th>21</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>-2</td>
<td>-7</td>
<td>-12</td>
<td>-17</td>
<td>-22</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

La raison est ici \(4 \)
La raison est ici \(-5 \)
La raison est ici \(1 \)

Une suite possède toujours un nom (la suite \(t_n \), la suite \(u_n \)) et chaque terme de la suite est indiqué. Ainsi, quand tu écris \(u_4 \), c'est que tu veux considérer le quatrième terme de la suite \(u_n \). Si tu écris \(t_{27} \), c'est le 27\(^e\) terme de la suite \(t_n \). Enfin, quand tu veux considérer un terme quelconque de la suite \(u_n \), alors, tu écriras \(u_k \).

La relation mathématique qui caractérise une S.A. est la suivante :

\[
 u_k = u_{k-1} + r
\]

(1)

Ce qui signifie simplement que n'importe quel terme \((u_k)\) vaut le précédent \((u_{k-1})\) augmenté d'une constante, la raison (notée \(r \). Bien évidemment, cette raison \((r)\) peut être positive ou négative.

Pour trouver un terme de la suite, on utilise souvent **la formule de position** suivante :

\[
 u_k = u_1 + (k - 1).r
\]

(2)

Cette formule présente un inconvénient : tu as besoin de connaître le premier terme.
En règle générale, on préfère donc travailler avec la formule

\[u_k = u_p + (k - p)r \] \hspace{1cm} (3)

Disons que celle-ci est beaucoup plus générale que (2) puisqu'elle permet de partir de n'importe quel terme. (Si \(p = 1 \), on retrouve d'ailleurs la formule (2)).

Après la formule de position (3), la seconde formule à bien connaître concerne les sommes partielles (somme des \(k \) premiers termes d'une SA).

\[S_n = \frac{(u_1 + u_n)}{2} . n \]

Que cela signifie-t-il ? Pour calculer la somme des 25 premiers termes d'une SA, il suffit de calculer le 1er terme, le 25e terme, de les additionner, de les diviser par 2... et de les multiplier par 25. Beaucoup plus simple que n'importe quelle recette de cuisine ! (enfin, pour moi qui ait tant de mal à mitonner de petits plats !)

En pratique : soit la suite \(u_n \) : 5 3 1 -1 -3 -5...

Si tu veux calculer \(S_{25} \) (la somme des 25 premiers termes de cette suite, c'est-à-dire \(u_1 + u_2 + u_3 + u_4 + ... + u_{23} + u_{24} + u_{25} \)), voici le procédé détaillé. Calcule

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>Il est donné, c'est 5</th>
</tr>
</thead>
</table>
| \(u_{25} \) | **Tu utilises la formule de position (2)**
\[u_{25} = u_1 + (25 - 1) . (-2) \] \hspace{1cm} (1)
\[u_{25} = 5 + 24 . (-2) \]
\[u_{25} = -43 \] |
| Tu additionnes \(u_1 \) et \(u_{25} \) | \(5 + (-43) = -38 \) |
| Tu divises par 2 | \(-38/2 = -19 \) |
| Tu multiplies par 25 | \(-19.25 = 475 \) |

\(^{(1)} \) En lisant la suite \(u_n \), tu détermines immédiatement que la raison de cette suite est (-2)
2. SUITE GÉOMÉTRIQUE

Une suite géométrique\(^{(1)}\) (S.G.) est une suite de nombres réels telle que chaque terme de la suite (à partir du deuxième) est égal au précédent multiplié par un nombre constant non nul et différent de 1. Ce nombre s'appelle la raison et est noté q.

(1) Tu l’auras sans doute deviné : au lieu d’utiliser l’expression **suite géométrique**, tu rencontreras parfois l’expression **progression géométrique**.

Exemples : 1 4 16 64 256 1024 ... La raison est ici 4
3 -6 12 -24 48 -96 ... La raison est ici (-2)
-8 -4 -2 -1 -0,5 -0,25 ... La raison est ici (1/2)

La raison (q) peut être positive ou négative. Remarque simplement que si la valeur de la raison appartient à l’intervalle [-1, 1[, alors, les termes de la suite deviendront nécessairement de plus en plus proches de zéro. C'est le cas de la 3e suite ci-dessus.

La relation mathématique qui caractérise une S.G est la suivante (rappelle-toi que dans le cas d’une S.G, la raison ne se note pas « r » mais « q », c'est juste une convention d'écriture)

\[
 u_k = u_{k-1} \cdot q
\]
(1)

Ce qui signifie simplement que n'importe quel terme \((u_k)\) s'obtient en multipliant le précédent \((u_{k-1})\) par une constante, la raison (notée q).

Pour trouver un terme de la suite, on utilise souvent la **formule de position** suivante :

\[
 u_k = u_1 \cdot q^{(k-1)}
\]
(2)

Elle présente le même inconvénient que dans le cas d'une S.A : tu as besoin de connaître le premier terme. En règle générale, on préfère donc travailler avec la formule

\[
 u_k = u_p \cdot q^{(k-p)}
\]
(3)

Toutes ces fiches sont téléchargeables **gratuitement** sur www.asblentraide.be - Besoin d'infos ? 0478/219.276
Disons que celle-ci est beaucoup plus générale que (2) _puisqu'elle permet de partir de n'importe quel terme._ (Si $p = 1$, on retrouve d'ailleurs la formule (2)).

Après la formule de position (3), la seconde formule à bien connaître concerne les sommes partielles (somme des k premiers termes d'une SG).

$$S_k = u_1 \left(\frac{1 - q^k}{1 - q} \right)$$

Si tu as bien lu le point 1 concernant les SA, tu devrais comprendre assez facilement la notation S_k. Je suppose d'ailleurs que tu as bien entendu remarqué les nombreux parallélismes avec les SA.

Pour calculer la somme des 25 premiers termes d'une SG, c'est encore plus facile que pour les SA : tu n'as même pas besoin de calculer le 25e terme. Il suffit de connaître le 1e terme et la raison !

En pratique : soit la suite $u_n : 2 \quad 4 \quad 8 \quad 16 \quad 32 \quad 64...$

Si tu veux calculer S_{25} (la somme des 25 premiers termes de cette suite, c'est-à-dire $u_1 + u_2 + u_3 + u_4 + ... + u_{23} + u_{24} + u_{25}$), voici le procédé détaillé. Calcule

<table>
<thead>
<tr>
<th>u_1</th>
<th>Il est donné, c'est 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>En analysant u_n, tu constates facilement que $q = 2$</td>
</tr>
<tr>
<td>Tu calcule q^{25}</td>
<td>$2^{25} = 33,554,432$</td>
</tr>
<tr>
<td>Tu calcule $1 - q^{25}$</td>
<td>$1 - 33,554,432 = -33,554,431$</td>
</tr>
<tr>
<td>Tu divises par $(1 - q)$</td>
<td>$-33,554,431/ (1 - 2) = 33,554,431$</td>
</tr>
<tr>
<td>Tu multiplies enfin par u_1</td>
<td>$33,554,431 \cdot 2 = 67,108,864$</td>
</tr>
</tbody>
</table>

Tu conclus donc que $S_{25} = 67\,108\,864$

3. **SOMMES PARTIELLES ET SOMMES**

Comme on vient de l'écrire, S_{23} désigne aussi bien pour une SA que pour une SG, la somme des 23 premiers termes de la suite. C'est une somme partielle puisque, comme tu l'as compris, tu n'additionnes qu'une partie des termes de la suite considérée. Mais qu'en est-il si tu veux additionner **tous** les termes de la suite ?
Pour une SA, tu vas très vite constater que cela n’a pas beaucoup d’intérêt. En effet,

- Si la raison de la SA est strictement positive, alors, les termes de la suite vont inévitablement devenir de plus en plus grands. On dit d’ailleurs que la suite est croissante. Et si tu additionnes sans cesse des termes qui ne font que grandir, il est évident que la somme sera infiniment grande !

| -85 | -80 | -75 | -70 | -65 | -60 | -55 | -50 | … | somme totale = + ∞ |

Les nombres deviennent de plus en plus grands. Donc, les termes de la suite deviendront positifs et les nombres négatifs qu’on voit ci-dessus seront donc absorbés lorsque tu additionneras tous les termes de la suite.

- Si la raison de la SA est strictement négative, les termes deviennent cette fois-ci de plus en plus petits. La suite est dite décroissante. On peut tenir le même raisonnement que ci-dessus : si tu additionnes sans cesse des termes qui ne font que diminuer, il est évident que la somme sera infiniment petite.

| 11 | 7 | 3 | -1 | -5 | -9 | -13 | -17 | … | somme totale = - ∞ |

Les nombres deviennent de plus en plus petits. Les termes de la suite deviennent négatifs. La somme totale sera donc - ∞.

En bref, calculer des sommes totales dans une SA n’est pas très intéressant puisque la réponse ne peut être que + ∞ ou - ∞.

Pour les SG, le raisonnement s’avère plus fin. En effet,

- Si la raison de la SG est strictement supérieure à 1, alors, les termes de la suite deviennent de plus en plus grands ou de plus en plus petits suivant que le 1er terme de la suite soit positif (1) ou négatif (2). (q = 2 dans (1) et (2))

(1)

| 10 | 20 | 40 | 80 | 160 | 320 | 640 | … | somme totale = + ∞ |

(2)

| -10 | -20 | -40 | -80 | -160 | -320 | -640 | … | somme totale = - ∞ |

- Si la raison de la SG est inférieure à -1, alors, les termes de la suite deviennent une fois sur deux grands et puis petits. On dit que la suite ne converge pas. La somme totale est alors impossible à calculer. (q = -2)

| -10 | 20 | -40 | 80 | -160 | 320 | -640 | … | somme totale impossible |

Toutes ces fiches sont téléchargeables gratuitement sur www.asblentraide.be - Besoin d’infos ? 0478/219.276
Mais si la raison de la SG est comprise dans l'intervalle $]-1, 1[$, là, c'est un cas beaucoup plus intéressant. En effet, pour ces valeurs de la raison, les termes de la suite se rapprochent toujours de zéro. Voici deux exemples numériques où $q = 0.5$ pour (3) et $q = -0.25$ pour (4)

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0.5</th>
<th>0.25</th>
<th>0.125</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>64</td>
<td>-32</td>
<td>16</td>
<td>-4</td>
<td>1</td>
<td>-0.25</td>
<td>0.0625</td>
<td>...</td>
</tr>
</tbody>
</table>

Puisque la queue de la suite se rapproche de zéro, alors, dans ce cas, et uniquement dans ce cas, il est possible de faire la somme totale de tous les termes. Au lieu d'être notée S_n, cette somme totale est notée S.

$$S = \frac{u_1}{1 - q}$$

En bref...

<table>
<thead>
<tr>
<th></th>
<th>Suite arithmétique</th>
<th>Suite géométrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Définition</td>
<td>$u_k = u_{k-1} + r$</td>
<td>$u_k = u_{k-1} \cdot q$</td>
</tr>
<tr>
<td>Formule de position</td>
<td>$u_k = u_1 + (k - 1).r$</td>
<td>$u_k = u_1 \cdot q^{(k-1)}$</td>
</tr>
<tr>
<td>particulière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formule de position</td>
<td>$u_k = u_p + (k - p).r$</td>
<td>$u_k = u_p \cdot q^{(k-p)}$</td>
</tr>
<tr>
<td>générale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme partielle</td>
<td>$S_k = \frac{(u_1 + u_k)}{2} \cdot k$</td>
<td>$S_k = u_1 \left(\frac{1 - q^k}{1 - q}\right)$</td>
</tr>
<tr>
<td>Somme totale</td>
<td>Sans intérêt</td>
<td>$S = \frac{u_1}{1 - q}$</td>
</tr>
<tr>
<td>Propriété</td>
<td>$u_k = \frac{u_{k-1} + u_{k+1}}{2}$</td>
<td>$(u_k)^2 = u_{k-1} \cdot u_{k+1}$</td>
</tr>
</tbody>
</table>

Tu n'as pas compris quelque chose ? Aide-nous à améliorer ces fiches !
Tu cherches des sujets que tu n'as pas trouvés ? Dis-le nous !
Découvre aussi notre forum sur lequel tu peux venir poser tes questions.

N'hésite pas à nous faire connaître : totalement gratuit.

Commentaires, souhaits, remarques…
On t'attend sur notre groupe Facebook !
« Centre de remédiation scolaire Entr’aide »

Toutes ces fiches sont téléchargeables gratuitement sur www.asblentraide.be - Besoin d'infos ? 0478/219.276